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We introduce a new class of bootstrap percolation models where the local rules
are of a geometric nature as opposed to simple counts of standard bootstrap
percolation. Our geometric bootstrap percolation comes from rigidity theory
and convex geometry. We outline two percolation models: a Poisson model and
a lattice model. Our Poisson model describes how defects—holes is one of the
possible interpretations of these defects—imposed on a tensed membrane result
in a redistribution or loss of tension in this membrane; the lattice model is
motivated by applications of Hooke spring networks to problems in material
sciences. An analysis of the Poisson model is given by Menshikov et al. (4) In the
discrete set-up we consider regular and generic triangular lattices on the plane
where each bond is removed with probability 1−p. The problem of the exis-
tence of tension on such lattice is solved by reducing it to a bootstrap percola-
tion model where the set of local rules follows from the geometry of stresses. We
show that both regular and perturbed lattices cannot support tension for any
p < 1. Moreover, the complete relaxation of tension—as defined in Section 4—
occurs in a finite time almost surely. Furthermore, we underline striking
similarities in the properties of the Poisson and lattice models.

KEY WORDS: Equilibrium tension; self-stress; spider web; triangular lattice;
percolation on graphs; bootstrap percolation; graph rigidity.

1. INTRODUCTION

Consider a planar tensed membrane in space clamped on its boundary.
What happens when holes are created in this structure? When will it still
support tension? When will there be floppy portions that bend and flex?
When will the whole structure become floppy with tension vanishing
throughout the membrane? Naturally this depends on how the holes are



distributed and just what the structure of the membrane is. We present two
classes of percolation models, where tension can exist in a natural sense,
and where the creation of holes can have the consequence of relieving the
tension. One approach is a continuous bootstrap-like percolation of
compact defects distributed with a Poisson Law. The other is a bootstrap
percolation on a triangular lattice. In both of these models it is the geome-
tric properties of the underlying structure (after the holes are created) that
determines whether or not the tension exists. Thus, our paper introduces a
new class of geometric bootstrap percolation models, where the local rules
are determined via the convexity property. Namely, in the continuous
model described in Section 2 the local rules force the removal of all convex
corners (angles). In the discrete model our local rules (see Figs. 10–11)
prescribe the removal of the edges that are incident to the vertices whose
stars are convex. Schonmann, (1,2) Mountford (3) and others earlier studied
various bootstrap percolation models where local rules are defined via the
combinatorics (geometry) of local configurations.

We prove here that an infinite triangular (regular or perturbed) lattice,
where each edge has been removed independently with probability 1−p
> 0, cannot support an equilibrium tension almost surely (a.s.—throughout
the text). There are strong parallels between this result and the results
obtained by Menshikov et al. (4) for our continuous model. In the continu-
ous model the positions of numerous holes are distributed homogeneously
in the plane according to a Poisson Law with l > 0, and their shapes are
independently identically distributed (i.i.d.—throughout the text) random
functions on a circle which are independent of the Poisson Process. As with
the lattice model, tension vanishes almost surely. But in this model, the
criterion for tension existence is that there is some triangulation of the
complement of the holes such that an equilibrium tension is supported in
its 1-skeleton.

In our definition, stress (and, in particular, tension) is a real scalar
quantity wij=wji associated to each edge (i, j) between vertex i and vertex
j of a graph underlying a framework that triangulates the region in the
plane. This stress is said to be an equilibrium stress if the vector sum
;j wij(vi − vj)=0 for each vertex vi (treated as a vector in Euclidean space)
of the graph other than pinned vertices. There is no equilibrium condition
for pinned vertices. If an edge (i, j) has wij > 0, it is said to be in tension.
When a framework is connected and has all of its edges in tension it is easy
to show that this framework is rigid. This is one of the main tools to show
rigidity and one of the main reasons that the existence of an equilibrium
stress with all of its members in tension is of interest here. But the stress, as
it is defined here, is more accurately thought of as a stress coefficient,
rather than what might be usually referred to as a stress in physics or
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engineering. Each wij is not a force by itself. The vector quantity wij(vi − vj)
is essentially the physical force involved. But the wij are more easily dealt
with mathematically, and they are what has been used in the mathematical
literature.

When the percolation process of edge removal or hole creation is per-
formed, for any particular graph (the lattice model) or complement of the
holes (the Poisson model), the determination of whether there exists an
equilibrium stress that is positive on all the edges of some graph can be
difficult to determine. Fortunately, however, to calculate the critical
tension threshold for the Poisson model it is enough to consider only the
situation where convex holes intersect. If there is a region in the plane that
is removed, creating a hole that is not convex, then the convex hull of a
connected component has no tension in its interior. We call such an area
defective. It turns out that with high probability, these holes coalesce into
defective areas that and eventually cover the entire plane in the infinite
case. The proof of this is one of the main points of the paper by Menshikov
et al. (4)

In Section 1.1 we carefully define the notions of stress and rigidity. In
Section 1.2 we show how the discrete approach based on these notions can
be applied to help understand the rigidity of regions in the plane. Section 2
treats the continuous membrane model and recent probabilistic results for
it. The main probabilistic result of this paper states that the relaxation of
tension on a triangular lattice (regular or slightly perturbed) where each
edge has been removed independently with probability 1−p > 0 occurs in a
finite time (discrete time for our bootstrap process is defined in Section 3)
almost surely; this is proved in Section 3. Menshikov et al. (4) showed that in
the continuous case the relaxation of tension also occurs in a finite time a.s.
In Section 3 we analyze similarities between the processes of tension
relaxation for the continuous and discrete cases. In addition, we conjecture
that our methods used for triangular lattices can be applied to a broader
class of planar graphs. In the last section we discuss connections between
the problem of tension percolation for the infinite regular triangular lattice
and the same problem for finite subgraphs of this lattice.

Both models assume that after the edge removal or hole creation the
remaining medium remain static. If the medium, lattice or membrane, has
the property that it can deform and recreate another stressed configuration
after the removal of the edges (the lattice model) or the holes creation (the
continuous model), it could arrive at a new stressed configuration in equi-
librium. If the medium has such elastic properties, both results should
rather be interpreted not as immediate relaxation, but as an inevitable
displacement restoring the ability of the system to support tension; in other
words, to preserve strong stability, the system has to rearrange itself. For
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Fig. 1. A perturbed fragment of a sub-graph of the triangular lattice; vertices marked with
circles may be adjacent to other edges of the sub-graph.

example, in the lattice model a star of E-type (see Fig. 10 in Section 3) can
reshape into the star that can support tension (see Figs. 1 and 2). In the
continuous model the displacement can be pictured in many different ways.
Of course, if the probability distribution is such that the medium is not
even connected, then the material will not even be able to rearrange itself
after the edges have been cut or the holes have been created. Note, that
unlike tension percolation, this connectivity percolation has a critical
probability value below which the medium remains connected, almost
surely, and above which it is disconnected, almost surely (Menshikov,
Sidorenko 1987).

Using computer simulation Tang and Thorpe (5, 6) studied the rigidity
of large finite networks of elastic springs of natural length zero, where
tension is supplied by the boundary frame. They refer to this model as a
network of elastic springs under tension. In their model as soon as bonds
(edges) are removed the network (framework) deforms around the missing
edges and the sites move to new equilibrium positions. ‘‘For the perfect

Fig. 2. An E-star can reshape into a star supporting tension.
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lattice where no bonds are missing, the lattice node serves as the equilib-
rium position because the forces exerted on a site through adjacent
stretched springs balance each other. However, as soon as bonds are
removed, this balance is destroyed and the NETWORK DEFORMS
AROUND THE MISSING SPRINGS AND THE SITES MOVE TO
NEW EQUILIBRIUM POSITIONS. It is around these new equilibrium
positions which can be very far away from the corresponding original
lattice nodes, that the sites in the network are vibrating...’’ Their simulation
results suggest that there is a non-trivial threshold that lies between the cri-
tical thresholds for rigidity percolation (TRP) and connectivity percolation
(TCP). The value of this threshold depends on the value of the external
force. As the external force changes from zero to infinity, the value of the
threshold changes from TRP to TCP.

We observe that our results do not contradict those of Tang and
Thorpe for the reasons mentioned in the preceding paragraphs.

1.1. Frameworks: Rigidity and Stresses

A bar-and-joint framework is a graph (possibly, with countably many
vertices) together with its realization in Rd. We consider only discrete
frameworks: any compact subset of Rd may contain only a finite number of
vertices of framework. Denote by G(E, V, V0; p) a framework in Rd with
the edge set E, and the vertex set V with pinned (fixed in Rd) subset of
vertices V0 … V; here p is the list of all the coordinates of the vertices of the
framework. We will denote the graph of the framework by G(E, V, V0),
where V0 is the set of vertices that must be pinned in a realization. Thus, in
our notation p defines a realization of the graph G(E, V, V0) in Rd. Vertices
that are not pinned are called free. If V0=”, we will write simply
G(E, V; p). Notice, that in the mathematics of rigidity there is a tendency
to use term framework instead of network preferred by physicists. Denote
by vi the vector of coordinates of vertex vi ¥ V.

Definition 1.1. An equilibrium stress (or self-stress) is an assign-
ment of real numbers wij=wji to the edges, a tension if the sign is positive,
or a compression if the sign is negative, so that the equilibrium conditions

C
{j | (ij) ¥ E}

wij(vj− vi)=0

hold at each vertex vi ¥ V0V0 (see Fig. 3).

Definition 1.2. A framework G(E, V, V0; p) that has an equilibrium
stress, positive on all edges, is referred to as a spider web.
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Fig. 3. Equilibrium stress.

For example, an infinite regular triangular lattice is, obviously, a
spider web (see Fig. 4 for a piece of such grid). The following propositions
immediately follow from the definition of stress.

Proposition 1.3. If G=(E, V; p) is a spider web in Rd, then G has
infinitely many edges and vertices, and their convex hull is an affine sub-
space of Rd.

Proposition 1.4. If G(E, V; p) is a spider web, then for each vertex
v of G the convex hull of the vertices adjacent to v contains v.

Denote the set of vertices adjacent to v by A(v). The following propo-
sition follows from the definition of spider web.

Fig. 4. Triangular grid.

148 Connelly et al.



Proposition 1.5. Let v be a vertex of a spider web G(E, V; p) in Rd.
Suppose there is a subset of vertices of A(v) such that its affine hull is a
hyperplane in Rd passing through V. Then, if the affine hull of A(v) is Rd,
the convex hull of A(v) intersects both open half-spaces determined by this
hyperplane.

Two frameworks in Rd are called edge equivalent if they have the same
graph and the same lengths of all edges. Two edge equivalent frameworks
in Rd are called congruent if all distances between corresponding pairs of
vertices are the same. Notice, that for a finite framework the list of the
vertex coordinates p can, obviously, be regarded as a point in the space of
parameters Rd |V|.

Definition 1.6. A finite framework G(E, V, V0; p) in Rd is called
rigid in Rd if there is a neighborhood Np … Rd |V| of p such that any other
realization q of graph G(E, V, V0) satisfying the following conditions
(1)–(3) is congruent to G.

(1) G(E, V, V0; q) is edge equivalent to G(E, V, V0; p),

(2) q ¥Np,

(3) the pinned vertices of G(E, V, V0; q) coincide with the pinned
vertices of G(E, V, V0; p).

If a framework G satisfies the above definition with Np=Rd |V|, it is
called globally rigid in Rd |V|. Note that a globally rigid framework is auto-
matically rigid. A framework that is not rigid is called flexible. It is impor-
tant to specify the dimension of the space where our framework G is
considered. A graph can be rigid in R2, but not rigid in R3: for example, the
graph depicted in Fig. 5 has motions that keep the boundary vertices on
the plane, but move the vertices U, V and W, lying inside the triangle, from
the plane (dashed lines show that the extensions of the edges do not have a
common point: this is a sufficient condition for this graph to be flexible in
the space). There are a few ways to define rigidity for infinite graphs, but
the existing tools of rigidity theory allow one to work only with those
definitions where the rigidity of an infinite graph is understood as the
rigidity of its finite subgraphs. It is natural to refer to this type of rigidity
as finite rigidity (see Bezdek et al. (7)). Since in this paper we deal only with
finite types of rigidity we shall omit the word finite throughout the rest of
the paper.

In the following definition all frameworks are assumed to have no
pinned vertices.
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Fig. 5. Rigid in the plane, but not in space.

Definition 1.7. An infinite framework G(E, V; p) in Rd is referred
to as rigid if any finite sub-framework of G(E, V; p) is contained in a rigid
finite sub-framework of G(E, V, p).

The above definition of rigidity was adopted by Holroyd (8, 9) in his
studies of generic rigidity percolation on lattices (see also Grimmett (10)).
Since the definition of rigidity for finite graphs can be applied to infinite
graphs with all but finitely many vertices pinned, the following definition of
pseudorigidity is consistent.

Definition 1.8. An infinite framework G(E, V, V0; p) in Rd is
referred to as (globally) pseudorigid if for any finite subset V − of V the
framework obtained from G(E, V, V0; p) by pinning all of the vertices in
V0V − is (globally) rigid.

To avoid confusion, let us notice that in some papers (e.g., Bezdek et
al., (7) and Connelly (11)) the above property is called finite rigidity. Rigidity
in Rd obviously, implies pseudorigidity in Rd. However, rigidity in R2 does
not imply pseudorigidity in R3. For example, an infinite graph triangulat-
ing R2 is always rigid in the plane, however, if it has a subgraph shown in
Fig. 5, it is not pseudorigid in space. Let us illustrate the differences
between rigidity and pseudorigidity: the regular triangular lattice is rigid
in R2 and pseudorigid in R3, but not rigid in R3, whereas the square lattice
is pseudorigid in R3 , but not rigid in Rd (r \ 2). The pseudorigidity of
the square lattice follows from the basic properties of spider webs (see
Connelly (12, 13)).

Our motivation for introducing tension percolation models was to
study the properties of random graphs that guarantee the rigidity not only
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in R2, but also in R3. One of such properties is the existence of an equilib-
rium tension (Connelly, (12) and Connelly and Whiteley (14)). An infinite
framework can be rigid in R2 but not even pseudorigid in R3. For example,
let ABC be a triangle in the regular triangular lattice. Now, add a triangle
UVW and edges BV, AU, and CW to the lattice, as it is shown in Fig. 5.
The resulting infinite graph will still be rigid in the plane, but not in
3-space, since the added vertices can be lifted from the plane without
changing the lengths of the edges. The computer simulation program of
Jacobs and Thorpe (15, 16) constructs large rigid clusters (finite, indeed) by
pseudorandom edge removal from the triangular lattice; it is interesting
that most of these clusters are rigid in R2, but flexible in R3 with the
boundary pinned. Our main result explains, to some extent, why these
clusters should not be rigid in R3 with the boundary pinned: a spider web is
always pseudorigid (Proposition 1.11), but for a triangular lattice T any
non-negligible edge removal has the consequence that no infinite subset of
T is a spider web (Theorem 3.2).

The rigidity and plasticity properties of a glass are related to how
amenable the glass is to continuous deformations requiring little energy.
From a physical point of view it is not enough to declare that the distance
constraints force the structure to have only one configuration, since the
bonds in a physical network do not behave as ideal bars in a framework.
There should be a way of describing the behavior of the system as it is per-
turbed. That is why physicists often consider the energy function defined
on the edges of a network of Hooke springs: each spring has some optimal
length at which its energy is minimal, stretching or shortening a spring
increases the energy of this connection. A tensegrity framework is a gener-
alization of this model where besides Hooke springs there are members
whose energy increases with the distance, and members whose energy
decreases with the distance. In context of energy considerations it is often
useful to work with the notion of tensegrity framework (Roth and Whiteley, (17)

and Connelly and Whiteley (14)).
In a tensegrity framework all edges are partitioned into three types,

cables E+, struts E− , and bars E0, i.e., E=E0 2 E+ 2 E− . Together, struts,
cables, and bars are called members. If a cable is stretched, the energy in
the cable increases; if a strut is shortened, the energy in it increases too.
Any change in the length of a bar forces the energy to increase. Therefore,
networks of Hooke springs are bar tensegrities from a mathematical point
of view.

Let G(E0, E+, E− ; V, V0; p) be some tensegrity framework in Rd. The
energy Hij of member (ij) considered as the function of its squared length l2ij

— is monotone increasing if (ij) is a cable,
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— is monotone decreasing if (ij) is a strut,

— has a strict local minimum at l0ij called the equilibrium length of
(ij), if (ij) is a bar.

It is natural to define the energy function H of a finite tensegrity
framework (finite network of Hooke springs) as the sum of the energy
functions of its members. Thus,

H=1
2 C
(ij) ¥ E

Hij(|vj− vi |2)=
1
2 C
(ij) ¥ E

Hij(l
2
ij). (1)

When all members are bars the simplest way to define the energy
function is as follows

H=1
2 C
(ij) ¥ E

aij(lij−l0ij)
2, (2)

where the sum is over all ordered pairs of vertices of the framework, lij is
the length of the bond between i and j, l0ij is the equilibrium bond length,
and aij > 0 is the spring constant of the bond between vertices vi and vj.
Here Hij(x)=x+(l0ij)

2−2`x l0ij.
In the spirit of the definition of equilibrium stress we assume that a

strut can support only compression, a cable can support only tension, and
a bar can be under either type of stress, depending on whether its length
is larger or smaller than l0ij. For more detailed information on tensegrities
see the works of Roth and Whiteley, (17) Connelly and Whiteley, (14) and
Connelly. (12, 13)

Definition 1.9. A finite tensegrity framework G(E, V, V0; p) in Rd

with pinned vertices V0 … V is called prestress stable if

(1) The first derivatives of Hij(x) evaluated at x= | vi− vj | 2 consti-
tute an equilibrium stress on G.

(2) the second differential of H(|vi− vj) | 2)—regarded as the function
of the coordinates of point p ¥ Rd |V|—is a positive semidefinite quadratic
form whose kernel, restricted to infinitesimal motions leaving V0 unmoved,
consists of trivial infinitesimal motions of the framework.

As in the case of rigidity, this definition can be applied to infinite
frameworks with only finitely many free vertices—and we use this in the
following definition.
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Definition 1.10. An infinite framework G(E, V, V0; p) in Rd is called
prestress stable if for any finite subset V − of V there is an interpretation of
the edges which have at least one vertex in V − as either cables or struts such
that the tensegrity framework obtained from G(E, V, V0; p) by pinning all
of the vertices in V0V − is prestress stable in Rd.

The concept of prestress stability comes from engineering and, basi-
cally, accounts for local minima of the energy function. This concept is
defined in Connelly (12) and Connelly and Whiteley. (14) If Hij are twice
continuously differentiable, a prestress stable framework realizes a local
minimum of the global energy function H (Connelly and Whiteley (14)). Note
that if Hij are defined by formula 2, they are twice continuously differen-
tiable on (0,.).

1.2. Tension

The existence of a tension (a positive equilibrium stress) on a frame-
work in the plane implies some important rigidity properties for this
framework considered in three-space. This may have some interesting con-
sequences for modeling physical properties of materials with networks of
Hooke springs and geometry of convex surfaces. The rigidity properties of
infinite graphs (lattices) drew the attention of physicists since the early 80’s.
It turns out that real glasses are well represented by random central-force
networks of Hooke springs (Thorpe (18)). The success of these methods
resulted in good characterization of elastic properties of glasses like
GexAsySe1−y (Thorpe (18)). In their experiments the variation of the param-
eters x and y is directly linked to variation of the probability of edge
removal in the independent rigidity percolation model on the triangular
lattice. The rigidity analysis of random networks has also been used for
modeling physical properties of proteins, polymers and semiconductors
(Thorpe and Duxbury (19)).

Let G be an infinite framework rigid in R2. The example discussed in
Section 1 clearly demonstrates that G need not be rigid in R3. The pictures
produced by Jacobs and Thorpe’s program (15, 16) also give examples of
R2-rigid, but not R3-rigid pseudorandom graphs. Meanwhile, the spider
web property implies the pseudorigidity in Rd for any d > 1.

Proposition 1.11. Let G(E, V, V0; p) be a (possibly infinite) spider
web in R2 with pinned vertices V0 … V. Then

(1) G(E, V, V0; p) is globally pseudorigid in Rd (d > 1);

(2) G(E, V, V0; p) is prestress stable in Rd (d > 1).
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These results can be derived from Connelly (12) and Connelly and
Whiteley, (14) where they are proved for finite frameworks (see also
Connelly (12, 13)). The proofs directly apply to infinite frameworks, since the
pseudorigidity has been defined via finite subgraphs of G.

2. POISSON MODEL

2.1. Tension in a Membrane

Let M be a tensed membrane (film) clamped on its boundary. A small
convex hole made in the membrane results in the redistribution of tension
in the rest of the membrane. Clearly, if we have a non-convex hole (which
can also be interpreted as the union of a number of convex overlapping
holes) tension ought to vanish on the convex hull of this set (see Fig. 6).

It is, however, less intuitive that tension may vanish at some subset
of the complement of a collection of convex non-overlapping holes. For
example, the convex hull of three holes shown on Fig. 7 cannot support
tension; this can even be verified with a sheet of some elastic material and
scissors. Therefore, if the area where tension vanishes is interpreted as
defective, all three polygons on Fig. 7 ought to coalesce into one big defect.
A mathematical explanation of this coalescence effect of a ‘‘pinwheel con-
figuration’’ is given in Menshikov et al. (4) Roughly speaking, the non-exis-
tence of tension on the convex hull of the three holes is due to the visible
‘‘swirl’’ in the area where the triangles ‘‘almost’’ meet.

By a (convex) tiling of a closed planar set with piecewise-linear or no
boundary we mean a locally finite partition of this set into subsets of three
types: open convex polygons called 2-cells, open segments called edges or

Fig. 6. Two overlapping holes: tension must disappear on the convex hull of them.
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Fig. 7. Three non-overlapping holes: tension must disappear on the convex hull of them.

1-cells, and points called vertices or 0-cells. The 1-skeleton of a tiling is a
framework whose vertex set is the vertex set of the tiling, and whose edge
set is the tiling’s edge set. A triangular tiling where any two triangles whose
closures intersect can only make contact either at a common vertex or at a
full common edge is called a triangulation (see Fig. 8).

Definition 2.1. Let M be a set with a polygonal or no boundary in
R2 (M might be all of R2), and let H be a collection of open polygons
in M, such that the number of polygons intersecting any compact subset of
R2 is finite. We call the elements of H holes and denote by H the pointwise
union of the holes.

Definition 2.2. In the context of the above definition we say that
M0H supports tension if M0H admits a partition with the edge set E and

Fig. 8. A triangulation of the complement of the shaded area in the septagon.
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vertex set V such that the framework (E, V, V 5 “M) is a spider web. Let S
be a closed subset of M0H. We say that tension is lost on S if there is no
closed subset A of M0H such that A supports tension and contains S.

Evidently, in this definition a general convex tiling can be replaced by
a triangulation without any loss of generality. A direct generalization of
this definition to the case of higher dimensions is possible, but not quite
natural, since not all spider webs in dimensions higher than 2 can be inter-
preted as 1-skeletons of polyhedral tilings (see Connelly and Whiteley (14)).
In the planar case the situation is simplified by the fact that any spider web
with self-intersections can be turned into the 1-skeleton of a polygonal
tiling by adding points of self-intersections to the vertex set of the frame-
work, and modifying the edge set accordingly: the cone of positive stresses
of the 1-skeleton of the new partition contains the cone of positive stresses
of the original skeleton. A more natural definition for the higher dimen-
sions would be one in which we require the existence of a three-dimensional
spider web in the complement of the holes such that each vertex of each
hole is incident to at least one edge of the web.

Let us now make some observations about holes. First, if a hole is non-
convex, then there is no triangulation of the complement such that its
1-skeleton (vertices on the boundary of M are pinned, indeed) supports a
non-zero equilibrium tension. For instance, the equilibrium of forces at
vertex v in Fig. 9 is impossible, if all edges incident to this vertex are under
tension. Therefore, if two holes overlap, and their union is not convex, such
as in Fig. 6, tension vanishes on all of their convex hull. Intuitively, the
vanishing of tension is rather obvious—the pieces ABC and EFG are
‘‘floppy’’ in the space. This is called the coalescence effect of overlapping
holes. We summarize this observation in the following proposition.

Fig. 9. Non-convex hole.
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Proposition 2.3. Let H be a an open polygonal subset of R2. If
R20H supports tension, all connected components of H are convex
polygons.

Notice, that the above proposition is not valid for dimensions greater
than two. Obviously, a saddle point of a 3-dimensional hole can serve as a
vertex of a spider web realized in the complement of the hole. Nevertheless,
by Proposition 1.5 a set supporting tension in Rd cannot have points of
strict convexity.

Proposition 2.4 (Menshikov et al. (4)). Let M be a convex subset of
R2 with a polygonal or no boundary (M might be all of R2). For a finite set
of polygonal holes H there is a supporting tension subset Smax of M0H
such that any subset of M0H supporting tension is contained in Smax.

Thus, when the number of holes is finite, M0H can be partitioned
into two polygonal subsets, the unique maximal (with respect to inclusion)
subset supporting tension and its complement where tension vanishes. The
case of infinite system of holes is more complicated. Even under additional
restrictions on the system of holes, for example, if the vertices of the holes
form a discrete point system where the distance between every pair of
points is no less than some r, and there is no empty circle of radius greater
than some R, or, that the sizes of the holes are uniformly bounded both
from above and below, it is not obvious that the union of all subsets of
holes supporting tension can be represented as the complement of a
discrete set of non-overlapping polygons.

Conjecture 2.5. Let H be an infinite discrete system of convex
polygons in R2. Then the union of all subsets of R20H supporting tension
can be represented as the complement of a discrete set of edge-disjoint
convex polygons.

Let us summarize the implications of the existence of tension in the
complement of the holes. They directly follow from (non-trivial) Propo-
sition 1.11 the first part of which can be derived from the results of
Connelly (12) and Connelly and Whiteley. (14)

Proposition 2.6. Let H be a discrete collection of convex open
polygons in R2 possibly overlapping. If R20H supports tension, then the
1-skeleton of any triangulation of R20H is globally pseudorigid and pre-
stress stable in R3.
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There are also interesting connections between our model and convex
geometry that, in its original form, are due to Maxwell (20, 21) and Cremona; (22)

they are outlined in Menshikov et al. (4)

2.2. Bootstrap Percolation of Convex Defects

Menshikov et al. (4) assume that holes are associated with the nodes of
a Poisson point process on R2. They show that if the ‘‘centers’’ of the holes
are distributed in R2 according to a Poisson law and their shapes are i.i.d.,
tension disappears on all of R2 a.s. In fact, this result follows from a more
general theorem of the authors on the behavior of iterated convex hulls of
connected subsets of Rd, where the initial configuration of subsets is dis-
tributed according to a Poisson law, and the shapes of the elements of the
original configuration are independent of this Poisson distribution. For the
latter problem they establish the existence of a critical threshold in terms of
the number of iterated convex hull operations required for covering all
of Rd. Below we give a short account of their results.

Definition 2.7. A hole (f-hole) centered at p ¥ Rd is a region

H(p, f)=3p+f 1 x
||x||
2 x : ||x|| [ 14

where f is a continuous positive function defined on a unit (d−1)-sphere.

Therefore, each hole is completely described by a couple (p, f), where
p is the center of the hole and f is a continuous function on a unit sphere
that determines the shape of the hole boundary. Consider a d-dimensional
Poisson point process with rate l. Let Y=Y(w) be the collection of nodes
of some realization w of the process. Each node y ¥ Y(w) is the center of a
hole H(y, fy), where function fy is positive and continuous. Let m be a
probability measure on some subset of positive continuous functions on the
unit (d−1)-sphere. Suppose that for each y the function fy is chosen from a
distribution m independently of the other functions and the configuration w.
Therefore, the holes H(y, fy) are i.i.d..

Definition 2.8. Let H be a set of holes. Elements of H are called
defects of 0-th generation.

Definition 2.9. A connectivity component (understood topologi-
cally) of defects of the kth generation is referred to as a k-cluster.
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Definition 2.10. A defect of the (k+1)th generation is the convex
hull of a k− cluster.

Lemma 2.11 (Menshikov et al. (4)). Let our membrane M be all
of R2. Then tension vanishes on a defect of any generation.

The following theorem from Menshikov et al. (4) is the main result for
the independent Poisson model of tension percolation.

Theorem 2.12. For any distribution m and any l > 0 there exists a
non-random non-negative integer N=N(m, l) such that N-cluster coincides
with Rd a.s.

In this paper we establish a similar result for tension percolation on a
triangular lattice. There are strong parallels between the continuous and
the lattice models. The probability 1−p of independent edge deletion plays
the role of the Poisson density l. The number Ncr of applications of local
rules (see Theorem 4.2) required to eliminate all the infinite connected
components in the triangular lattice Tp is, in a way, similar to the number
N=N(m, l) from the above theorem. Ncr and N=N(m, l) are both
referred to as the destruction time.

3. TRIANGULAR LATTICE MODELS

We consider a regular or slightly perturbed triangular lattice T on the
plane where each edge is removed independently with probability 1−p,
p > 0. Is there a critical value pc < 1, such that for p > pc there is an infinite
spider web subgraph a.s.? We show that for any p < 1 there is no spider
web subgraph a.s. Thus, no non-trivial pc exists. Our percolation model
is related to so-called ‘‘bootstrap percolation’’ introduced on trees by
Chalupa et al. (23) and, later, on d-dimensional lattices by Kogut and
Leath. (24) In these models, points are independently occupied with a low
density and the resulting configuration is taken as the initial state for
dynamics based on some collection of local rules, in which the occupation
status of a point is updated according to the configuration of its neighbors.
van Enter (25) conducted a rigorous analysis of these models (see also
Aizenman and Lebowitz (26)). For a review of bootstrap percolation models
see Adler. (27) For the latest results on bootstrap percolation see Dehghan-
pour and Schonmann. (28)

Consider the affine plane R2 and two vectors eF1 and eF2 with coordinates
(1, 0) and (`32 ,

1
2) respectfully . Also, set eF3=eF2 − eF1. The regular triangular
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Fig. 10. Local removal rules.

lattice T is a framework whose vertex set is the collection of all points with
coordinates V(T)={ieF1+jeF2 | (i, j) ¥ Z2}, and whose edge set E(T)
consists of all edges between vertices a, b ¥ V(T) such that a−b=eFk or
a−b=−eFk for k=1, 2 or 3. Let us denote an edge between a and b by
(a, b).

Suppose some edge have been removed from T. Denote the resulting
lattice by T −. By Proposition 1.4 edges in configurations congruent to those
depicted in Fig. 10 cannot support tension. We call configurations in Fig. 10
E-, S-, n-, and i-configurations respectfully, and refer to any such configu-
ration as relaxed. By Proposition 1.5 edge (va) and edges (wa) and (wb)
in Fig. 11 cannot support tension. We call such edges legs in l- and
p-configurations. We refer to l- and p-configurations as partially relaxed.
Therefore, if T − contains a spider web as a subgraph, this spider web does
not have edges in configuration depicted in Fig. 10 and edges that are legs
in l- or p-configurations.

Assume we have an infinite parallel Turing machine that can operate
on the stars of the vertices of an infinite (but locally finite) grid; the
machine works on all stars simultaneously. Once the machine sees a star
where edges form one of the configurations congruent to those depicted in
Figs. 10 or 11 (E, S, n, i, l, p), it removes all the edges that cannot support
tension. The machine proceeds for as long as there are edges that can be
removed using the local rules given by Figs. 10 and 11.

In Section 4 we show that if the initial lattice Tp was obtained from T
as the result of the independent edge removal with probability 1−p, the

Fig. 11. Local partial removal rules.
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parallel machine operating on the grid requires only a finite number of
steps to turn Tp into a graph with no infinite connected components.

Definition 3.1. A framework G(E, V, V0; p) is said to support
tension if it has a sub-framework which is a spider web.

Our main result is

Theorem 3.2. For any p < 1 the lattice Tp obtained from the
regular triangular lattice T with edge length 1 as the result of the indepen-
dent edge removal with probability 1−p > 0 cannot support tension almost
surely. This is also true for any perturbation of Tp such that the vertices are
not farther away from the their original positions more than 1/4.

However, first we want to prove

Lemma 3.3. With a positive probability Tp cannot support tension.

Proof of the Lemma. By Proposition 1.4 an edge incident to a
vertex whose star is congruent to one of the stars depicted in Fig. 10 cannot
support tension. Therefore, the lattice Tp can support tension if and only if
the lattice Tp(1) obtained from Tp by removing all edges in such relaxed
configurations can support tension. We call these edges implicitly removed,
as opposed to initially removed edges, that is, E(T0Tp). Similarly, we
construct the lattice Tp(2) by removing all edges from Tp(1) in configura-
tions congruent to the ones in Fig. 10. In the same manner we define latti-
ces Tp(3), Tp(4), ..., etc. Notice, that if Tp(n+1) — Tp(n) for some n, then
Tp(n+k) — Tp(n) for any positive integer k.

Let k be a positive integer and H(k) be a regular hexagon centered at
the origin with a side of length k, i.e., the hexagon with the vertices keF1,
keF2, keF3, (−k) eF1, (−k) eF2 and (−k) eF3. Let F(k) denote the event ‘‘all
interior edges of H(k) have been, possibly implicitly, removed from Tp(k)
for some k.’’ It is obvious from geometric observations that for any k0 < k

P 1F(k+1) : 3
k

i=k0

F(i)2=P(F(k+1) | F(k)).

Let us show that

P 1 3
.

i=k0+1
F(i) : F(k0)2= D

.

k=k0

P(F(k+1) | F(k)), (3)
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Indeed, for k > k0

P 1 3
k

i=k0+1
F(i) | F(k0)2=

P(F(k) | 4k−1
i=k0 F(i)) P(4 k−1

i=k0 F(i))
P(F(k0))

=P(F(k) | F(k−1)) P 1 3
k−1

i=k0+1
F(i) | F(k0)2

=·· ·=D
k

i=k0

P(F(i+1) | F(i))

Letting kQ. proves (3).
We will show that for large k the probability of the event

F(k+1) | F(k) is greater than 1− ck, for some sequence {ck}, such that
; (.)
(k=k0) ck <.. This yields

P 1 3
.

i=k0+1
F(i) | F(k0)2 \ D

.

k=k0

(1− ck) > 0,

which, in turn, proves the Lemma, since P(F(k0)) > 0 for any fixed k0 and
positive p.

Indeed, the probability that on each of the six sides of H(k) at least
one edge has been initially removed is

(1−pk)6=(1−e−ak)6 > 1−6e−ak

where a=−logp > 0. Now, pick k0 so large that 1−6e−ak is positive as
soon as k \ k0. Set ck=e−ak. Then ; ck is, indeed, finite. Meanwhile, as
one can conclude upon studying Fig. 12, whenever there are no edges inside
H(k), and at least one edge is removed on each side of it, an incremental
application of the removal rules depicted in Fig. 10 will eventually, (in a
number of steps not exceeding k), delete all edges inside H(k+1). If an
edge is missing on one of the sides of H(k), then there are two vertices v1
and v2 on this side whose stars look like some two stars in the Fig. 10.
According to the removal rules, the stars of v1 and v2 should be removed.
Following this procedure in both directions along the side of H(k) we
eventually remove all the edges on this side.

Therefore, with a positive probability the event F(k) implies that all
the edges of our lattice are eventually removed.

Let us discuss the case when the coordinates of the vertices of Tp have
been perturbed. Assume T is regular and the edges of T are of length 1. Let
T −p be a framework whose graph is isomorphic to that of Tp, and whose
vertices are located at the distance of at most 1/4 from the corresponding
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Fig. 12. Typical propagation of a regular hexagon. Solid lines are remaining edges, dotted
lines are removed ones. Dark circles are vertices of H(k), and grey circles are vertices of
H(k−1).

vertices of Tp. In other words, T −p is a perturbed version of Tp, and the
displacement of each vertex is limited by 1/4. We need only local removal
rules that are depicted in Fig. 10. The angle between any two (directed)
edges in any of these four configurations cannot become greater than P if
the vertices are not further than 1/4 from their original positions. Thus, the
edges in these configurations cannot bear tension and should be removed
according to our local rules. Therefore all arguments of the proof work for
the perturbed lattice T −p . L

Notice that in our model an empty hexagon propagating to infinity
plays the role of a ‘‘critical droplet,’’ sometimes called ‘‘Straley void.’’
Before returning to our main theorem we would like to make a few impor-
tant observations. Below, we will refer to the process described in the above
proof as ‘‘hexagon propagation.’’ We will make use of the following
definition.

Definition 3.4. We say that a sequence of planar frameworks L(n)
eventually disappears and write L(n)Q”, if for any fixed bounded subset
A of the plane there exists N> 0 such that L(n) 5 A=” for all n \N.

Therefore, the above lemma immediately implies

Corollary 3.5. With a positive probability, Tp(n)Q”. Moreover,
conditioned on the event Rk=‘‘all edges are initially removed in H(k),’’

P(Tp(n)Q” | Rk)Q 1

as kQ..
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Fig. 13. Hexagon propagation avoiding two angles.

We would like to make another observation about the proof of
Lemma 3.3. Suppose the interior of H(k) is empty. Evidently, to remove
all edges from H(k+1) using local removal rules described above we need
that at least one edge is absent (initially removed) on each side of H(k).
Suppose we are not allowed to look for such initially removed edges in the
planar cones (angles) defined by inequalities |j| [ 30° and |j−180°| [ 30°,
in the polar coordinate system (r, j) (see Fig. 13). It is not hard to check
that the arguments of the proof of Lemma 3.3 can be carried through
virtually unchanged. Thus we have

Corollary 3.6. Independently of the initial configuration inside the
above mentioned cones

P(Tp(n)Q” | R(k))Q 1

as kQ..

Notice that the above corollaries hold for a perturbed version of Tp
where the vertices moved the distances not exceeding 1/4. Let us return to
our main statement.

Proof of Theorem 3.2. Fix E > 0. By Corollary 3.6, there is N large
enough such that, if each edge in H(N) has been removed, the probability
that Tp(n)Q” is greater than 1− E/2, regardless of the configuration
inside the two cones. Let q=q(N) be the probability that all edges inside
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Fig. 14. M hexagons; with probability 1− E/2 all edges are removed in at least one of them.

H(N) have been initially removed. Obviously, q > 0 for any positive p.
There is a positive integer M such that

1−(1−q)M > 1− E/2.

Consider M non-overlapping hexagons Hi(N), i=0,..., M−1, of size N
along the horizontal axis with the centers at 0, NeF1, 2NeF1,..., (M−1) NeF1
(see Fig. 14). Notice, that each of the hexagons lies fully inside ±30° angles
for all the others; therefore, due to the symmetry and space homogeneity,
there is N> 0 such that each Hi(N) propagates to infinity in the way
described in the proof of Lemma 3.3 (with an angular restriction of
Corollary 3.6) with probability at least 1− E/2 independently of the initial
configuration inside the others. Thus, the probability that inside of at least
one of the M hexagons all the edges have been initially removed, and this
hexagon will propagate to infinity is greater than

(1− E/2)2 \ 1− E.

Now, recall the definition of tension. A framework supports tension if
there is a subgraph of this framework that can bear an equilibrium tension.
The local rules cull only those edges that cannot support tension. The
arguments above show that eventually all edges are bound to be removed
with probability at least 1− E. Since E > 0 is arbitrary, Theorem 3.2
holds. L

Studies of rigidity percolation (Jacobs et al., (15, 16, 29) and Holroyd (8))
show that the behavior of a regular triangular lattice may differ from the
behavior of a generic triangular lattice. A generic lattice in a strong sense is
a realization of a graph in Rd where the dimension of the space of stresses
of any finite subgraph of the lattice is minimal. All theorems and lemmas in
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this section hold not only for a regular triangular lattice T, but also for any
generic triangular lattice obtained from T by a sufficiently small perturba-
tion, for we essentially need only three removal rules: the n-rule, the S-rule,
the E-rule, and the i-rule, which are ‘‘robust’’ to such perturbations. (see
Lemma 3.3 and Fig. 13). Of course, our tension percolation problem for a
perturbed triangular lattice makes sense only if there are perturbations of
the regular lattice preserving the property of the lattice to support an equi-
librium tension. It follows from the results of Barany and Dolbilin (30) or
Connelly (11) on the uniform stability of sphere packings that there is E > 0
such that any E-perturbation of the regular triangular lattice supports an
equilibrium tension (see also Bezdek et al. (7)).

We suspect that all our results hold for a larger class of generic trian-
gular lattices, although our method cannot be applied straightforwardly to
the case of an arbitrary generic triangular lattice, because a perturbation
can turn a relaxed configuration into a non-relaxed configuration (see
Fig. 2).

A general tension percolation problem can be stated as follows. Let G
be an infinite framework in Rd with discrete vertex set. Remove each edge
with probability 1−p independently of the other edges, and denote the
resulting graph by Gp. What is the infinum of p’s such that Gp supports
tension a.s.? We call this number the critical probability of tension perco-
lation. We have a general conjecture about tension percolation on planar
graphs. To formulate this conjecture we need to introduce the notion of
directional spectrum of a framework. By the direction of a line on the plane
we understand the angle this line forms with, say, the horizontal axis. If G
is a framework on the plane, the set of directions defined by the edges of G
is called the directional spectrum of G. The edge set of a framework G is
said to have the (l, L) property if the edge lengths of G are bounded from
below by some l > 0 and from above by some L > 0.

Conjecture 3.7. Let G=(E, V, V0) be an infinite framework on the
plane realized without self-intersections. Suppose the directional spectrum
of G is finite, and E has the (l, L) property. Then the critical probability of
tension percolation is 1.

The notion of an (r, R) point system is widely used in discrete
geometry and mathematical crystallography. A point set V is called an
(r, R)-system, or a Delaunay system, if

(1) for any point v ¥ V the ball of radius r centered at v does not
contain any other vertices of V, and

(2) any ball of radius R contains at least one point of V.
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Notice, that for a graph with a finite directional spectrum the (l, L)-
property of the edge set is equivalent to the (r, R)-property of the vertex
set.

4. FINITE TIME OF RELAXATION

Assume that it takes one unit of time for an infinite parallel Turing
machine to remove all the configurations of edges congruent to those
depicted in Fig. 10. Thus, the lattice Tp is transformed to Tp(n) by time n.
Let us call this process the relaxation of tension on Tp, and say that tension
has been completely lost if there is no infinite connected component of non-
removed edges on the lattice. We shall show that the complete relaxation of
tension occurs in a finite time a.s. We shall also show that there is a non-
random time N \ 1 such that Tp(N) has no infinite connected components
a.s., but Tp(N−1) has an infinite component a.s. (by convention, we set
Tp(0)=Tp).

Lemma 4.1. The event T(p, N) :=‘‘Tp(n) has an infinite connected
subgraph’’ is a tail event.

Proof. We need to show that this event does not depend on the state
of any finite subset of T. Let T1 and T2 be two subgraphs of our triangular
lattice T such that T1 can be obtained from T2 by adding and/or removing
only a finite number of edges. Let E be those edges of T1 that are absent
in T2. Denote by T1(n) and T2(n) the results of n iterated applications of
the local rules to T1 and T2. Suppose T1(n) has an infinite connected
component C. If T2(n) has no infinite connected component, T2(n) differs
from T1(n) at infinitely many places. An edge e of C can be absent from
T2(n), only if there is an edge path on T of length no greater than n con-
necting a vertex of e to one of the vertices of E. Thus, only those edges of
C can be missing from T2 that lie at distance no greater than n from the
vertex set of E. The number of such edges is finite. Therefore T2 contains
an infinite connected component of C which is, in turn, is an infinite
connected subgraph of T. L

Theorem 4.2. There is a non-random number Ncr such that Tp(Ncr)
is a union of finite disjoint graphs a.s., but Tp(Ncr−1) has an infinite
connected component a.s. (and Tp(0) — T as before).

Proof. From the above lemma and Kolmogorov’s 0−1 law it
follows that P(T(p, n)) is either zero or one. Moreover, this probability is
non-increasing as n grows, and P(T(p, 0))=1. Therefore, either there is Ncr
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Fig. 15. Hexagon propagation inside a box.

such that P(T(p, Ncr−1))=1 and P(T(p, Ncr))=0, or P(T(p, n))=1 for
all n. To rule out the second possibility, it suffices to show that there is
positive integer N such that Tp(N) has no infinite connected component
a.s.

The idea of the proof is based on Theorem 3.2. Let N and M are the
same as in the proof of Theorem 3.2. Pick E < 1

10 and N and M correspond-
ing to this E. Consider a partition of the plane into the boxes with the side
length S=13(M−1) N > (4`3+6)(M−1) N. Assume one of the boxes
—call it B0—is centered at 0. In this box consider hexagons with the side N
centered at 0, NeF1, 2NeF1,..., (M−1) NeF1.

We call box B0 open if (1) one of these hexagons has all the edges
removed, (2) using the procedure of implied edge removal as described by
Lemma 3.3 and avoiding ±30° cones, it will grow till its upper and lower
sides coincide with those of the box B0 and (3) one of the edges on its upper
side with the X-coordinate between 0 and (M−1) N has been initially
removed (see Figs. 14 and 15).

Following the line of arguments in Theorem 3.2, we can conclude that
the probability that B0 is open can be made greater than 0.9 (however, we
might need to have N quite large). The same is true about the other boxes
of the tiling {B0+ieF1+j×(1F, 0) | (i, j) ¥ Z2}. Moreover, both vertical and
horizontal neighbors are open independently, since they ‘‘look for’’ differ-
ent initially removed edges (this is because we ignore the interior of the
cones described between Corollaries 3.5 and 3.6). Therefore, all the boxes
are open independently of each other. Besides, if two neighboring (on a
side) boxes are open, their interior areas, where edges are removed, are
connected.

Now, let us couple the boxes with the vertices in the site percolation
model on Z2, where each site is open with probability 0.9 and closed
otherwise. There is a unique open cluster of open sites and no infinite
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cluster of closed sites (e.g., see Aizenman et al. (31) or Grimmett (10)). There-
fore, each cluster of closed sites is surrounded by a finite contour of open
site. Geometrically, for our triangular lattice, it implies that each connected
component of non-removed edges is surrounded by a contour of removed
ones, and therefore each such component is finite. Thus, after N (or even
less) iterations Tp(N) has no infinite connected component a.s. L

5. DISCUSSION: TENSION PERCOLATION ON 3D LATTICES

AND FINITE SUBGRAPHS OF 2D LATTICES

Let us sketch how tension percolation on a 3-dimensional ‘‘triangular’’
lattice relates to the spider web properties of finite subgraphs of a 2-di-
mensional triangular lattice. To introduce a three-dimensional analog of T
we need to enlist the notion of point lattice. Recall that a point lattice is the
set of all points in the affine space Rd that can be represented as integral
linear combinations of the vectors of a fixed basis of Rd. A face-centered
cubic lattice of points—fcc lattice—is constructed by adding the centers of
all the facets of a standard tiling by cubes to the vertex set of this tiling,
lattice Z3. This lattice is a natural 3-dimensional generalization of the
hexagonal point lattice (i.e., the vertex set of what we call in this paper the
regular triangular lattice), since it is generated by the edge set of a regular
3-simplex. Denote by T3 the graph whose vertex set is the fcc lattice, and
whose edge set consists of all unordered pairs of vertices (a, b) such that
a−b is the shortest vector of our fcc lattice. Remove each edge indepen-
dently with probability 1−p and denote the resulting lattice by T3p. For
what values of p does the modified lattice support tension with a positive
probability?

Suppose we want to approach this problem in the same way we
approached the 2-dimensional problem. Here, instead of a propagating
hexagon we have a propagating 3-polytope (see Lemma 3.3). Notice, that
regular triangular and square lattice are the only types of 2-dimensional
(edge) sublattices of T3 .

We call P a lattice polytope if all its faces lie on periodic connected
subgraphs of T3; note that our definition of a lattice polytope differs from
the standard definition of a lattice polytope used in the theory of lattice
points. Thus, the facets of a lattice 3-polytope P can only be of two sorts:
lying on a square sublattice and lying on a triangular sublattice (here
sublattices are understood in the sense of periodic graphs). The geometry of
a particular facet as well as the geometry of P are not so important, since
there are only a finite number of lattice polytopes in T3 up to affine equiv-
alence. From this remark it becomes clear that, in principal, tension perco-
lation on T3 is no different from tension percolation on any periodic graph
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in R3 with triangular planar subgraphs. Now, let us compare the hexagon
propagation and the polytope propagation (of course, we work with the
graph that this polytope cuts out of T3p, rather than with the polytope
per se). If a side of the propagating hexagon misses an edge, the entire side
has to go; however, a missing edge on a facet of the propagating polytope
is not enough to conclude that the rest of the facet (with fixed boundary) is
not able to bear tension.

Let P be a propagating (convex) polytope in T of some fixed shape.
That is, we consider nested copies of P in T3p propagating to infinity, just
like we considered propagating hexagons in Tp (see Section 4). Denote an
infinite sequence of such nested polytopes by P(n), where n is the linear size
of the P(n). Let F be a face of P, and let F(n) be the corresponding
sequence of faces of P(n). F(n) is a finite subgraph of Tp bounded by a
convex polygon. Denote by Pp(F, n) the probability that after each edge
has been removed independently from F with probability 1−p the resulting
graph (with fixed boundary) has a spider web subgraph. If ;n Pp(F, n)
converges, the arguments of Lemma 3.3 and Theorem 3.2 work, and T3p ,
p < 1 cannot support tension a.s. Notice that if F has the square type,
Pp(F, n) obviously converges, since each term in the series is bounded from
above by 2npn. Of course, even if no analog of Lemma 3.3 can be proved in
dimension 3, the critical probability of tension percolation for T3 may well
be 1. We end up with the following problem.

Problem 5.1. Is it true that the critical probability of tension perco-
lation for T3 is less than 1?
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